On Symmetric Left Bi-Derivations in BCI-Algebras

نویسندگان

  • G. Muhiuddin
  • Abdullah M. Al-roqi
  • Young Bae Jun
  • Yilmaz Ceven
چکیده

The notion of symmetric left bi-derivation of a BCI-algebra X is introduced, and related properties are investigated. Some results on componentwise regular and d-regular symmetric left bi-derivations are obtained. Finally, characterizations of a p-semisimple BCI-algebra are explored, and it is proved that, in a p-semisimple BCI-algebra, F is a symmetric left bi-derivation if and only if it is a symmetric bi-derivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Derivations BCC-Ideals on BCC-Algebras

In the theory of rings, the properties of derivations are important. In [15], Jun and Xin applied the notion of derivations in ring and near-ring theory to BCI-algebras, and they also introduced a new concept called a regular derivation in BCI-algebras. They investigated some properties of its .In this manuscript, the concept of fuzzy left (right) derivations BCCideals in BCC-algebras is introd...

متن کامل

Left Jordan derivations on Banach algebras

In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.

متن کامل

Further Results on Derivations of Ranked Bigroupoids

Several authors 1–4 have studied derivations in rings and near rings. Jun and Xin 5 applied the notion of derivation in ring and near-ring theory to BCI-algebras, and as a result they introduced a new concept, called a regular derivation, in BCI-algebras. Zhan and Liu 6 studied f-derivations in BCI-algebras. Alshehri 7 applied the notion of derivations to incline algebras. Alshehri et al. 8 int...

متن کامل

Generalizations of Derivations in BCI-Algebras

In the present paper we introduced the notion of (θ ,φ)-derivations of a BCI-algebra X . Some interesting results on inside (or outside) (θ ,φ)-derivations in BCI-algebras are discussed. It is shown that for any commutative BCI-algebra X , every inside (θ ,φ)derivation of X is isotone. Furthermore it is also proved that for any outside (θ ,φ)-derivation d(θ ,φ) of a BCI-algebra X , d(θ ,φ)(x) =...

متن کامل

Fixed point approach to the Hyers-Ulam-Rassias approximation‎ ‎of homomorphisms and derivations on Non-Archimedean random Lie $C^*$-algebras

‎In this paper‎, ‎using fixed point method‎, ‎we prove the generalized Hyers-Ulam stability of‎ ‎random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras‎ ‎and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for‎ ‎the following $m$-variable additive functional equation:‎ ‎$$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013